THE PLEASURES OF COUNTING

Suppose there is a Petanque triples tournament where $3 n$ players are grouped and allocated to three hats 1, 2 and 3, and n teams are selected by drawing, at random, a player from each hat.

What is the probability that player X in hat 1 will be in the same team as player Y in hat 3?

It turns out that this probability is: $\operatorname{Pr}(X$ and Y in same team $)=\frac{1}{n}$
How is this relatively simple formula obtained?

Consider the simple case where there are 12 players to be selected in $n=4$ teams, and players A, B, C, D are in hat 1 ; players E, F, G, H are in hat 2 ; and players I, J, K, L are in hat 3.

Here is a possible draw. First, the letters D, B, A and C are drawn from hat 1 and written down in order in column 2. Then the letters G, F, H and E are drawn from hat 2 and written down in order in column 3. Finally, the letters L, I, K and J are drawn from hat 3 and written down in order in column 4.

The teams are: (1) D, G, L; (2) B, F, I; (3) A, H, K; and C, E, J.

column 1	column 2	column 3	column 4
Team	hat 1	hat 2	hat 3
1	D	G	L
2	B	F	I
3	\boldsymbol{A}	H	\boldsymbol{K}
4	C	E	J

What is the probability that players A and K will be in the same team? As they are above.

Now there are $n!=4!=4 \times 3 \times 2 \times 1=24$ possible arrangements of the letters A, B, C, D in hat 1 , where n ! means n-factorial. Similarly for the letters E, F, G, H in hat 2 and I, J, K, L in hat 3. So the total number of possible teams is $n!\times n!\times n!=24 \times 24 \times 24=13824$ since each of the $n!$ arrangements of A, B, C, D can be coupled with n ! arrangements of E, F, G, H; and these coupled again with the $n!$ arrangements of I, J, K, L.

Now; back to hat 1. Amongst the $n!=4!=24$ arrangements of A, B, C, D there are $(n-1)!=3!=3 \times 2 \times 1=6$ arrangements where A is the first letter. These are: $A B C D$, $A C D B, A D C B, A D B C, A C B D$ and $A B D C$. Also, there are $(n-1)$! arrangements where A is the second letter, $(n-1)$! arrangements where A is the third letter and $(n-1)$! arrangements where A is the fourth letter. Similar reasoning applies to arrangements of individual letters in hats 2 and 3.

After drawing from hats 1, 2 and 3 the possibilities where A and K are in team 1 are:
$A, E, K:(n-1)!\times(n-1)!\times(n-1)!=6 \times 6 \times 6=216$;
$A, F, K:(n-1)!\times(n-1)!\times(n-1)!=6 \times 6 \times 6=216 ;$
$A, G, K: \quad(n-1)!\times(n-1)!\times(n-1)!=6 \times 6 \times 6=216 ;$
$A, H, K:(n-1)!\times(n-1)!\times(n-1)!=6 \times 6 \times 6=216$.
The possibilities where A and K are in team 2 are:
$A, E, K:(n-1)!\times(n-1)!\times(n-1)!=6 \times 6 \times 6=216 ;$
$A, F, K:(n-1)!\times(n-1)!\times(n-1)!=6 \times 6 \times 6=216$;
$A, G, K:(n-1)!\times(n-1)!\times(n-1)!=6 \times 6 \times 6=216 ;$
$A, H, K:(n-1)!\times(n-1)!\times(n-1)!=6 \times 6 \times 6=216$.
And similarly for teams 3 and 4.

So the number of possible arrangements where A and K are together in the one team are:

$$
n \times n \times(n-1)!\times(n-1)!\times(n-1)!=4 \times 4 \times 6 \times 6 \times 6=3456
$$

The probability that A and K are together in the same team is:

$$
\operatorname{Pr}(A \text { and } K \text { together })=\frac{\text { number of possibilities }}{\text { total number of arrangements }}=\frac{3456}{13824}=\frac{1}{4}
$$

This could also be expressed as

$$
\begin{aligned}
\operatorname{Pr}(A \text { and } K \text { together }) & =\frac{\text { number of possibilities }}{\text { total number of arrangements }} \\
& =\frac{n \times n \times(n-1)!\times(n-1)!\times(n-1)!}{n!\times n!\times n!}
\end{aligned}
$$

Noting that $n!=n \times(n-1)$! this result for A and K can be generalised as the probability of player X (from hat 1) being in the same team as player Y (from hat 2) as

$$
\operatorname{Pr}(X \text { and } Y \text { together })=\frac{(n-1)!}{n!}=\frac{(n-1)!}{n \times(n-1)!}=\frac{1}{n}
$$

For a triples tournament where there are $3 n=54$ players arranged in three hats containing $n=18$ players, and player X is in hat 1 and player Y is in hat 2; the probability that X and Y are in the same team after a random selection (one player from each hat) is $\frac{1}{18}=0.05555 \ldots$

Rod Deakin,
Wednesday, 25 June, 2008

